Search results for "Trace algebras"

showing 5 items of 5 documents

Defining relations of minimal degree of the trace algebra of 3×3 matrices

2008

Abstract The trace algebra C n d over a field of characteristic 0 is generated by all traces of products of d generic n × n matrices, n , d ⩾ 2 . Minimal sets of generators of C n d are known for n = 2 and n = 3 for any d as well as for n = 4 and n = 5 and d = 2 . The defining relations between the generators are found for n = 2 and any d and for n = 3 , d = 2 only. Starting with the generating set of C 3 d given by Abeasis and Pittaluga in 1989, we have shown that the minimal degree of the set of defining relations of C 3 d is equal to 7 for any d ⩾ 3 . We have determined all relations of minimal degree. For d = 3 we have also found the defining relations of degree 8. The proofs are based …

Discrete mathematicsDefining relationsTrace algebrasAlgebra and Number TheoryTrace (linear algebra)Degree (graph theory)Matrix invariantsGeneral linear groupField (mathematics)Representation theoryCombinatoricsSet (abstract data type)AlgebraGeneric matricesInvariants of tensorsGenerating set of a groupMathematicsJournal of Algebra
researchProduct

Defining relations of the noncommutative trace algebra of two 3×3 matrices

2006

The noncommutative (or mixed) trace algebra $T_{nd}$ is generated by $d$ generic $n\times n$ matrices and by the algebra $C_{nd}$ generated by all traces of products of generic matrices, $n,d\geq 2$. It is known that over a field of characteristic 0 this algebra is a finitely generated free module over a polynomial subalgebra $S$ of the center $C_{nd}$. For $n=3$ and $d=2$ we have found explicitly such a subalgebra $S$ and a set of free generators of the $S$-module $T_{32}$. We give also a set of defining relations of $T_{32}$ as an algebra and a Groebner basis of the corresponding ideal. The proofs are based on easy computer calculations with standard functions of Maple, the explicit prese…

Polynomial (hyperelastic model)Defining relationsTrace (linear algebra)Trace algebrasApplied MathematicsSubalgebraCenter (category theory)Free moduleNoncommutative geometryRepresentation theoryAlgebraGröbner basisGeneric matricesMatrix invariants and concomitantsGröbner basisMathematicsAdvances in Applied Mathematics
researchProduct

Matrix algebras with degenerate traces and trace identities

2022

In this paper we study matrix algebras with a degenerate trace in the framework of the theory of polynomial identities. The first part is devoted to the study of the algebra $D_n$ of $n \times n$ diagonal matrices. We prove that, in case of a degenerate trace, all its trace identities follow by the commutativity law and by pure trace identities. Moreover we relate the trace identities of $D_{n+1}$ endowed with a degenerate trace, to those of $D_n$ with the corresponding trace. This allows us to determine the generators of the trace T-ideal of $D_3$. In the second part we study commutative subalgebras of $M_k(F)$, denoted by $C_k$ of the type $F + J$ that can be endowed with the so-called st…

PolynomialAlgebra and Number TheoryTrace (linear algebra)Trace algebrasDiagonal matricesDegenerate energy levelsMathematics - Rings and AlgebrasType (model theory)Polynomial identitiesStirling numbersCombinatoricsMatrix (mathematics)Settore MAT/02 - Algebra16R10 16R30 16R50Rings and Algebras (math.RA)Diagonal matrixFOS: MathematicsDegenerate tracesAlgebra over a fieldCommutative propertyTrace algebras; Polynomial identities; Diagonal matrices; Degenerate traces; Stirling numbersMathematics
researchProduct

Trace identities and almost polynomial growth

2021

In this paper we study algebras with trace and their trace polynomial identities over a field of characteristic 0. We consider two commutative matrix algebras: $D_2$, the algebra of $2\times 2$ diagonal matrices and $C_2$, the algebra of $2 \times 2$ matrices generated by $e_{11}+e_{22}$ and $e_{12}$. We describe all possible traces on these algebras and we study the corresponding trace codimensions. Moreover we characterize the varieties with trace of polynomial growth generated by a finite dimensional algebra. As a consequence, we see that the growth of a variety with trace is either polynomial or exponential.

PolynomialPure mathematicsTrace (linear algebra)Trace algebrasField (mathematics)01 natural sciencesPolynomial identitiesMatrix (mathematics)16R10 16R30 16R50Polynomial identitieCodimensions growth Polynomial identities Trace algebras0103 physical sciencesDiagonal matrixFOS: Mathematics0101 mathematicsCommutative propertyMathematicsCodimensions growth; Polynomial identities; Trace algebrasAlgebra and Number TheoryCodimensions growth010102 general mathematicsTrace algebraMathematics - Rings and AlgebrasExponential functionSettore MAT/02 - AlgebraRings and Algebras (math.RA)010307 mathematical physicsVariety (universal algebra)
researchProduct

Defining relations of minimal degree of the trace algebra of 3 X 3 matrices

2008

The trace algebra Cnd over a field of characteristic 0 is generated by all traces of products of d generic n × n matrices, n, d 2. Minimal sets of generators of Cnd are known for n = 2 and n = 3 for any d as well as for n = 4 and n = 5 and d = 2. The defining relations between the generators are found for n = 2 and any d and for n = 3, d = 2 only. Starting with the generating set of C3d given by Abeasis and Pittaluga in 1989, we have shown that the minimal degree of the set of defining relations of C3d is equal to 7 for any d 3. We have determined all relations of minimal degree. For d = 3 we have also found the defining relations of degree 8. The proofs are based on methods of representati…

generic matrices matrix invariants trace algebras defining relationstrace algebra
researchProduct